Potential of RapidEye and WorldView-2 Satellite Data for Improving Rice Nitrogen Status Monitoring at Different Growth Stages
نویسندگان
چکیده
For in-season site-specific nitrogen (N) management of rice to be successful, it is crucially important to diagnose rice N status efficiently across large areas within a short time frame. In recent studies, the FORMOSAT-2 satellite images with traditional blue (B), green (G), red (R), and near-infrared (NIR) wavebands have been used to estimate rice N status due to its high spatial resolution, daily revisit capability, and relatively lower cost. This study aimed to evaluate the potential improvements of RapidEye and WorldView-2 data over FORMOSAT-2 for rice N status monitoring, as the former two sensors provide additional wavelengths besides the traditional four wavebands. Ten site-year N rate experiments were conducted in Jiansanjiang, Heilongjiang Province of Northeast China from 2008 to 2011. Plant samples and field hyperspectral data were collected at three growth stages: panicle initiation (PI), stem elongation (SE), and heading (HE). The canopy-scale hyperspectral data were upscaled to simulate the satellite bands. Vegetation index (VI) analysis, stepwise multiple linear regression (SMLR), and partial least squares regression (PLSR) were performed to derive plant N status indicators. The results indicated that the best-performed VIs calculated from the simulated RapidEye and WorldView-2 bands, especially those based on the red edge (RE) bands, explained significantly more variability for above ground biomass (AGB), plant N uptake (PNU), and nitrogen nutrition index (NNI) estimations than their FORMOSAT-2-based counterparts did, especially at the PI and SE stages. The SMLR and PLSR models based on the WorldView-2 bands generally had the best performance, followed by the ones based on the RapidEye bands. The SMLR results revealed that both the NIR and RE bands were important for N status estimation. In particular, the NIR1 band (760–900 nm from RapidEye or 770–895 nm from WorldView-2) was most important for estimating all the N status indicators. The RE band (690–730 nm or 705–745 nm) improved AGB, PNU, and NNI estimations at all three stages, especially at the PI and SE stages. AGB and PNU were best estimated using data across the stages while plant N concentration (PNC) and NNI were best estimated at the HE stage. The PLSR analysis confirmed the significance of the NIR1 band for AGB, PNU, and NNI estimations at all stages except for the HE stage. It also showed the importance of including extra bands (coastal, yellow, and NIR2) from the WorldView-2 sensor for N status estimation. Overall, both the RapidEye and WorldView-2 data with RE bands improved the results relative to FORMOSAT-2 data. However, the WorldView-2 data with three extra bands in the visible and NIR regions showed the highest potential in estimating rice N status. Remote Sens. 2017, 9, 227; doi:10.3390/rs9030227 www.mdpi.com/journal/remotesensing Remote Sens. 2017, 9, 227 2 of 23
منابع مشابه
The role of Azolla on improving nitrogen efficiency in rice cultivation
Nitrogen is essential for both vegetative and generative stages of plant growth. Nitrogen efficiency is related to plant growth, production cost, and fertilizer residue. Azolla has the ability to increase nitrogen fixation from the atmosphere. Thus, Azolla cultivation in paddy field is one strategy for improving nitrogen fertilizer efficiency and increasing plant vegetative and generative growt...
متن کاملEstimation of Nitrogen of Rice in Different Growth Stages Using Tetracam Agriculture Digital Camera
Many methods are available to monitor nitrogen content of rice during various growth stages. However, this monitoring still requires a quick, simple, accurate and inexpensive technique that needs to be developed. In this study, Tetracam Agriculture Digital Camera (ADC) was used to acquire high spatial and temporal resolution in order to determine the status of nitrogen (N) and predict the grain...
متن کاملIdentification of production constraints and yield gap monitoring of local rice (Oryza sativa L.) cultivars in Mazandaran province
One of the main problems for rice production is the large difference between farmers' actual yields and attainable yields. Therefore, it is important to identify the limiting factors on yield and yield gap. In this research, all performed management practices from seedbed preparation to harvesting in 228 paddy fields of local rice cultivars in the east, central and west parts of Mazandaran prov...
متن کاملComparison of Satellite Imagery and Ground-Based Active Optical Sensors as Yield Predictors in Sugar Beet, Spring Wheat, Corn, and Sunflower
1 The original use of remote sensing using infrared photography for yield variation was conducted by Colwell (1956). Since the launch of the Landsat 1 imaging satellite in 1972 (Mulla, 2013), satellite imagery has been widely used in agriculture for yield prediction and most lately for site-specific N management. Bhatti et al. (1991) used Landsat imagery and auxiliary data to estimate wheat yie...
متن کاملA Kind of Rice Nitrogen Status Rapid Diagnostic Tool
Using data from three deformation positions (680 nm, 730 nm, and 765 nm) of spectral reflectance and derivative spectra curves from red to near infrared spectral bands, red edge reflectance spect ra index was developed. Nitrogen contents of rice canopy leaves were found to be significantly correlated with the red edge reflectance spectra index values at 0.01 probability level for different rice...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017